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ABSTRACT
Recently high-level pose features (HLPF) have been shown
to be efficient for action recognition in joint-annotated tasks.
However, the relative positions between pairs of joints in ac-
tual situations and the spatio-temporal information are not
considered in constructing HLPF. To tackle their problems,
we propose a set of novel high-level pose features (NHLPF).
Specifically, considering that the distances between adjacent
pairs of joints usually remain unchanged, we propose a hori-
zontally relative position feature and a vertically relative po-
sition feature. In addition, a joint inner product feature is pro-
posed to code the spatial information among each triplet of
joints. To code temporal information, we calculate the trajec-
tories of the above-mentioned three types of features as cor-
responding trajectory features. Furthermore, to combine the
spatial and temporal information, we present a joint energy
change feature, which is designed using observations of the
magnitude and direction of the force between joints. We eval-
uate our NHLPF on a benchmark dataset. The results show
that NHPLF are superior features for action recognition.

Index Terms— Action recognition, high-level pose fea-
tures

1. INTRODUCTION

Action recognition and pose estimation are both of great sig-
nificance in the field of computer vision. They have a mul-
titude of potential applications, such as intelligent surveil-
lance and human-computer interaction. In spite of the dif-
ferent goals of these tasks, many existing methods use pose
estimation as an input to recognize actions. Unfortunately,
the performance of pose estimation is far from perfect due to
large pose variations and complex backgrounds. To examine
the performance of features under the condition that pose es-
timation is perfect, some researchers begin to use annotated
joints to study action recognition.
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High-level pose features (HLPF), which are a combina-
tion of nine human pose-based features, proposed by Jhuang
et al. [1], show excellent results on joint-annotated dataset-
s, JHMDB. Three features in HLPF describe the positions of
joints and the trajectories of their motions in the Cartesian
coordinates as well as the polar coordinates. Four features
describe the distance relations and the orientation relations
between pairs of joints as well as their trajectories. In detail,
the distance relations feature describes the distances between
pairs of joints. The orientation relations feature describes the
intersection angles between lines connecting different joints
and the horizontal line. The other two features describe the
angle relations among triplets of joints and their trajectories.
Although the performance of HLPF is pleasurable on chal-
lenging datasets, the relative positions of joints in actual situ-
ations and the spatio-temporal information are not considered
in the process of constructing features.

First, in action recognition, the viewpoint of a video and
the distance between adjacent joints in a frame usually re-
main unchanged, when a person performs a kind of action.
For example, when a person runs, the distance between the
hip and knee almost remains the same, as shown in Figure 1
(a) and (b). In addition, when the same person performs dif-
ferent actions, the distance between the same adjacent joints
usually remains the same. Consequently, the discriminative
power of the distance relations feature is not strong enough.
We can draw the same conclusion for the orientation relations
feature. For the same action, different people may have dif-
ferent action amplitudes. For the same person performing the
same action, the action amplitude may be different at differ-
ent times. Thus for a particular action, the orientation of a
pair of joints may vary in a wide range. Moreover, the orien-
tation is seriously affected by the viewpoint. Therefore, the
discriminative power of the orientation relations feature is not
strong enough, either. The primary reason behind this conclu-
sion is that the distance relations feature and the orientation
relations feature treat each orientation equally; however, the
discriminative power in varying orientations is different. In
each frame, we use a minimum enclosing rectangle to locate
the torso of a person performing an action, such as brushing
hair, clapping and running. We can see that the long edge
of the rectangle is often approximately perpendicular to the
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ground. In addition, for limbs, the direction of motion gen-
erally adopts a horizontal or vertical orientation in relation to
the aforementioned long edge of rectangle. This means that
the discriminative power of horizontal and vertical orienta-
tions is much stronger. So, it is advantageous to calculate hor-
izontally and vertically relative positions between each pair of
joints. Thus, we present a horizontally relative position fea-
ture and a vertically relative position feature.

Secondly, three kinds of relations are described in [1]: sin-
gle joint position, relative position relation between each pair
of joints, and relative position relation among each triplet of
joints. For the relation between each pair of joints, the previ-
ous paragraph shows that the horizontally and vertically rela-
tive position features perform better than corresponding fea-
tures in HLPF. From the perspective of inner product space,
the horizontally (vertically) relative position feature is the in-
ner product between the horizontal (vertical) unit vector and a
vector from one joint to another. This inspired us to presume
that the inner products between the vectors of joints in each
joint triplet could also perform better. Thus, we propose a
joint inner product feature which describes the position rela-
tions of triplets of joints in an original way. Our experiments
verify that the joint inner product feature is more effective
than the angle relations feature in HLPF.

Thirdly, some features in HLPF describe the spatial in-
formation of joints, e.g., the distance relations feature, while
others describe the temporal information, e.g., the distance
trajectory feature. But there is no feature that describes the
spatial-temporal information. In order to describe this infor-
mation, we propose a novel feature, namely, the joint energy
change feature. We hold the view that for a particular ac-
tion, energy from each joint will change due to the motion
of other joints. For different actions, the energy changes of
different joints vary. Thus, we calculate the inner products
between the joint vectors and their trajectories to obtain this
novel feature. This process is based, first, on the theorem that
energy changes are equal to the net force acting upon them,
and secondly, from observations regarding the direction and
magnitude of the force between each pair of joints.

In summary, to address the problems of HLPF [1], we
propose novel high-level pose features (NHLPF). Consider-
ing that the distance between pairs of adjacent joints usual-
ly remain unchanged when people perform different actions,
we propose the horizontally and vertically relative position
features. Using the method of inner product, the joint inner
product feature is constructed. The joint energy change fea-
ture is designed to supply spatio-temporal information. We
conduct experiments on the challenging dataset: JHMDB [1],
for which manual annotation of human poses have been pro-
vided. NHLPF improves the state-of-the-art on this dataset.

2. RELATED WORK

Action recognition is a hot topic in computer vision and there
is a mountain of scholarship about this topic. In this section,
we introduce some recent works. Action recognition methods
can be grouped into two categories: methods based on local
space-time interest points and pose-based methods.

Methods based on local space-time interest points The
framework of these methods can be divided into detection
parts and description parts. Some classic detectors, such
as Harris 3D detector [2], the Cuboid detector [3] and the
Hessian detector [4] are spatio-temporal extensions of 2D
detectors or saliency measures. After space-time interest
points are detected, descriptors are computed at these points.
HOG/HOF descriptors [5] characterize local motion and ap-
pearance. HOG3D [6], ESURF [7], 3D SIFT [8], and
SOD [9] are 3D features computed in spatio-temporal space
using temporal sequences of images. After descriptors are
extracted, bag-of-words representation is used for classifica-
tion. In particular, the improved dense trajectory features with
Fisher vector representation have achieved an outstanding
performance on a multitude of challenging datasets [10] [11].

Pose-based methods In these methods, pose estimation
and pose-based description are two indispensable procedures
for action recognition. Yao et al. demonstrate that when us-
ing pose estimation from multiple camera views, actions can
be reliably recognized [12]. For relatively simple dataset-
s composed of monocular videos, it is established that esti-
mated poses are reliable to do the following action recogni-
tion [13]. Though providing reliable estimations for uncon-
trolled datasets is still complicated, Jhuang et al. propose
a challenging dataset, the JHMDB dataset, in which all the
joints are annotated [1]. Besides, Jhuang et al. present high-
level pose features (HLPF) [1], which show excellent perfor-
mance on the JHMDB dataset when joint positions are man-
ually annotated in each frame. Cheron et al. design pose-
based CNN (P-CNN) features [14]. When combined with the
improved dense trajectory features encoded by Fisher vector,
P-CNN features perform better than HLPF. However, due to
high computational complexity, these combined features are
not efficient.

In this work, we solve some problems in [1] which is
closely related to our work, and use pose-based methods to
construct features which show promising results in our exper-
iments.

3. HIGH-LEVEL POSE FEATURES (HLPF)

In this section, we introduce high-level pose features (HLPF),
which are used as a baseline in our algorithm. HLPF intro-
duced in [1] describe simple spatial and temporal relations
among the positions of the human joints. HLPF consist 9 fea-
tures which can be grouped into spatial relations features and
temporal relations features.



(a) A video frame (b) Skeleton (c) Joint positions (d) Relations of pairs of joints

(e) Relations of pairs of joints (f) Relations of triplets of joints (g) Trajectories of joints (h) Relations of hip and knee

Fig. 1: Overview of the construction of some features in HLPF and NHLPF. (a) A video frame from JHMDB dataset at frame
t. (b) The image at frame t+ k with connections at adjacent joints in different colors. The frame is from the same video clip as
the clip in (a). (c) Annotated joint positions at frame t. (d) Distance relations and orientation relations between pairs of joints.
(e) Horizontal and vertical relative positions between pairs of joints. (f) Angle relations and joint inner product among triplets
of joints. (g) Trajectories of joint positions from frame t to t + k. (h) The vector from right hip to right knee at frame t and
frame t+ k as well as trajectories of right hip and right knee.

Spatial relations features are computed from the positions
of three categories, namely, single joints, pairs of joints and
triplets of joints. For each frame, x− and y− coordinates
from all 15 joints are annotated, as shown in Figure 1 (c). For
each single joint, the position is first normalized with respect
to the human scale. Then, the relative position of each joint
to the center of the human body is computed to form normal-
ized positions feature that has 30 dimensions. For each pair
of joints, distance relations feature is obtained by calculat-
ing the distance between this joint pair. Orientation relations
feature is obtained by calculating the orientation of the vec-
tor connecting each pair of joints, as shown in Figure 1 (d).
There are C2

15 = 105 kinds of pairs, yielding 105 dimensions
for both features. For each triplet of joints, angle relations
feature is obtained by calculating the inner angles that span
the vectors connecting this joint triplet, as shown in Figure 1
(f). Since there are 3× C3

15 = 1365 inner angles spanned by
two vectors connecting all the triplets of joints, there are 1365
dimensions for this feature.

Temporal relations features are considered as the differ-
ence between spatial features along the trajectory at frame
t and t + k, i.e. the feature of dimension f is a sequence:
(f(t+s)−ft, · · · , f(t+ks)−f(t+(k−1)s)), k = (T−t)/s, where
T is the trajectory length, k is the sequence length, and s is
the step size. T = 7 and k = 2 are used in [1]. For each single
joint, they use the translation of normalized position along x
and y coordinates (xt2−xt1 , yt2−yt1), called Cartesian tra-
jectory feature. Translation of orientation arctan(

yt2−yt1

xt2−xt1
)

is computed as radial trajectory feature. For each pair or

triplet of joints, the trajectories of each spatial feature are cal-
culated to obtain the corresponding trajectory feature. Since
the sequence length of each feature dimension is 2, the di-
mension of each temporal feature is double its corresponding
spatial feature. This does not apply to the radial trajectory
feature, which has 30 dimensions. Figure 1 (g) shows an in-
stance of Cartesian trajectories with sequence length k = 5.
The pose is presented at the frame t + k and the trajectories,
shown in green, grow brighter with the passage of time.

For each dimension of these features, a codebook is gen-
erated using k-means with k = 20 for quantization. After
each video clip is described by a histogram, SVM is used to
perform training. More details can be found in [1].

4. NOVEL HIGH-LEVEL POSE FEATURES (NHLPF)

In this section, we introduce our novel pose-based features in
detail.

4.1. Horizontally and vertically relative position features

For pairs of joints, we design features from the perspective of
the position relations of joints in spatial and temporal space.

For spatial features, the horizontally and vertically rel-
ative position features are obtained by calculating the differ-
ence of x− and y− coordinates from each pair of joints, as
shown in Figure 1 (e). In detail, suppose that the position-
s of the pair of joints {Ji, Jj} at frame t are (xi,t, yi,t) and
(xj,t, yj,t), the horizontally relative position (HRP ) from Ji,t



to Jj,t is:

HRP (i, j, t) = xj,t − xi,t. (1)

The vertically relative position (V RP ) from Ji,t to Jj,t is:

V RP (i, j, t) = yj,t − yi,t. (2)

There are C2
15 = 105 kinds of pairs, yielding 105 dimensions

for both features.
For temporal features, trajectory features are calculated

according to the method mentioned in Section 3 with the same
parameters. Since the length of a sequence is 2, the dimension
of both features is 210.

4.2. Joint inner product feature

For triplets of joints, we also construct features from the per-
spective of the position relations of joints in spatial space and
temporal space, respectively.

For the spatial feature of each triplet of joints, the joint in-
ner product feature is obtained by computing the inner prod-
uct of a pair of vectors , as shown in Figure 1 (f). At frame
t, let (xi,t, yi,t), (xj,t, yj,t), (xk,t, yk,t) denote positions of
joints {Ji,t,Jj,t,Jk,t} in a triplet of joints, respectively. The
joint inner product (JIP ) of this triplet is calculated as:

JIP (i, j, k, t) =
−−−−→
Ji,tJj,t ·

−−−−→
Ji,tJk,t

= (xj,t − xi,t)(xk,t − xi,t) + (yj,t − yi,t)(yk,t − yi,t).
(3)

3 × C3
15 = 1365 triplets of joints result in 1365 dimensions

for this feature.
For the temporal feature, the trajectory feature is calcu-

lated as mentioned before. The dimension of the trajectory
feature is 2730.

4.3. Joint energy change feature

To combine spatial information with temporal information,
we propose a joint energy change feature. This feature is
constructed after making some observations.

First, each joint influences other joints through the force.
The magnitude is highly negatively correlated with the dis-
tance between each pair of joints. For each pair of adjacent
joints, the direction of the force is from one joint to the other.
For other pairs of joints, the force from one joint to the other
is the vector sum of the force from one joint to an adjacent
joint. Thus for each pair of nonadjacent joints, the direction
of the force is also from one joint to the other.

Second, the magnitude of the force remains unchanged
during a short period of time, i.e. a few frames. With these
two observations, the work of the force can be computed.

As shown in Figure 1 (h), the force F from Ji to Jj at
frame t is:

F (i, j, t) =
C

∥ Jj,t − Ji,t ∥2
(Jj,t − Ji,t). (4)

Without the loss of distinctiveness, here we set C to 1. As just
mentioned, the magnitude of the force F remains unchanged
during a short period time. So at frame t′ (t 6 t′ 6 t+k, k is
a small integer, t′ is an integer), the force F from Ji to Jj is:

F (i, j, t′) = F (i, j, t). (5)

The displacement S of the force F from Ji to Jj in k frames
is:

S(i, j, t, k) = (Jj,t+k − Ji,t+k)− (Jj,t − Ji,t). (6)

Accordingly, the work JEC of the force F from Ji to Jj in
k frames is:

JEC(i, j, t, k) = F (i, j, t)S(i, j, t, k) (7)

Thus, we get the joint energy change feature. There are C2
15 =

105 kinds of pairs, yielding 105 dimensions for this kind of
feature.

As mentioned above, we have described the position re-
lations between each pair of joints and among each triplet of
joints, but the position information of each single joint has-
n’t been described yet. To supply the position information of
single joints, the normalized positions feature, the Cartesian
trajectory feature, and the radial trajectory feature are used
in our method. We combine the features computed from s-
ingle joints (the normalized positions feature, the Cartesian
trajectory feature, and the radial trajectory feature), the fea-
tures obtained from the relations of joint pairs (the horizon-
tally and vertically relative position features, their trajectory
features, as well as the joint energy change feature), and the
features calculated from the relations of joint triplets (the join-
t inner product feature and its trajectory feature) to construct
the novel high-level pose features (NHLPF).

5. EXPERIMENTS

In this section we introduce the settings used in our experi-
ments and show experimental results of our novel features.

5.1. Experimental settings

We conduct experiments on the JHMDB dataset [1] which
contains 21 human actions involving brush hair, catch, clap,
climb stairs, golf, jump, kick ball, pick, pour, pull-up, push,
run, shoot ball, shoot bow, shoot gun, sit, stand, swing base-
ball, throw, walk and wave. Video clips are restricted to the
duration of the action. There are 36−55 clips per action class
with each clip containing 15 − 40 frames of size 320 × 240.
Human poses are annotated in each frame. Consequently,
there are 928 clips with 31838 frames annotated in total. 15
joints including shoulder, elbow, wrist, hip, knee, ankle, neck,
face and belly are all annotated manually, no matter whether
the joints are inside the frame.

We use l2 normalization to normalize features. For quan-
tization, a codebook is generated for each feature using k-
means with k = 20. All the training samples are used as



Table 1: Performance of the horizontally and vertically rela-
tive position features and their trajectory features, as well as
comparison of corresponding features in HLPF.

Method Accuracy
(%)

Horizontally Relative Position Feature (HRP) 43.1
Vertically Relative Position Feature (VRP) 51.5

HRP Trajectory Feature (HRPT) 31.1
VRP Trajectory Feature (VRPT) 41.1

HRP+VRP+HRPT+VRPT (H&V) 72.5
Distance Relations, Orientation Relations 69.9and their Trajectory Features (D&O)

inputs. Features are assigned to their closest codeword to gen-
erate histograms. To represent each video sample, we directly
concatenate histograms of different feature into a long vector.
Training and testing splits are generated randomly. The on-
ly constraint is that, for each action category, the ratio of the
number of clips in the training set and the testing set is close to
7 : 3. Ten splits are randomly generated and the performance
reported here is the average of the ten splits. For classifica-
tion, we use SVM with RBF kernel to train classifiers.

5.2. Performance of horizontally and vertically relative
position features

To verify the the effectiveness of the horizontally and vertical-
ly relative position features, as well as their trajectory features
in Section 4.1, we compare them with corresponding features
in HLPF, which are computed from pairs of joints, namely the
distance relations and orientation relations features, as well as
their trajectory features. Table 1 shows the performance of the
features mentioned above. We can see that the performance
of the vertical features (VRP and VRPT) is much better than
the horizontal features (HRP and HRPT). This is because ac-
tions are usually performed when the body is vertical to the
ground. By combining our novel features (H&V), we achieve
2.6% improvement when comparing with corresponding fea-
tures (D&O) in HLPF.

5.3. Performance of joint inner product feature

To verify the the effectiveness of the joint inner product fea-
ture and its trajectory feature in Section 4.2, we compare them
with corresponding features in HLPF, which are computed
from triplets of joints, namely the angle relations feature and
its trajectory feature. Table 2 shows the performance of afore-
mentioned features. The combination of our two features (P)
shows better performance than corresponding features (A) in
HLPF.

From Table 1 and Table 2, we can conclude that the tem-
poral features (HRPT, VRPT and JIPT) are not as distinctive
as the corresponding spatial features (HRP, VRP and JIP), but
they are indispensable. These results also indicate that our

Table 2: Performance of the joint inner product feature and
its trajectory feature, as well as comparison of corresponding
features in HLPF.

Method Accuracy
(%)

Joint Inner Product Feature (JIP) 53.8
JIP Trajectory (JIPT) 44.3

JIP+JIPT(P) 64.9
Angle Relations and its Trajectory Feature (A) 60.0

30%

40%

50%

60%

1 3 5 7 9

A
cc

u
ra

cy

Time Duration: k 

Joint Energy Change Feature

50.2%

Fig. 2: Performance of joint energy change feature with dif-
ferent time duration k.

novel features (H&V and P) improve upon the baseline per-
formance for corresponding features (D&O and A).

5.4. Performance of joint energy change feature

Figure 2 shows the performance of joint energy change fea-
ture with respect to the time duration k. It demonstrates that
a suitable time duration (k = 5) results in the highest accura-
cy. Actually, for a small k, imperfect annotations may cause
jittery trajectories, thus resulting in a lower performance. For
a large k, the force during this period is changed, so that this
feature no longer makes sense. Hereafter, the performance re-
lated to these two features is based on the setting that k = 5.

To show the complementarity of the joint energy change
feature and HLPF, we compare them in Table 3. Results in-
dicate that the JEC, which uses the spatio-temporal informa-
tion, is an excellent supplement to the spatial features and the
temporal features.

5.5. Comparison to the state-of-the-art

HLPF [1], dense trajectory features [10] encoded by Fisher
vectors [11] (DT-FV) and posed-based CNN features [14] (P-
CNN) are state-of-the-art methods for action recognition. We
combine NHLPF and HLPF as improved HLPF (IHLPF). The
comparisons of these methods are shown in Table 4. For P-
CNN with DT-FV, we use the results reported in [14]. For
HLPF, we use the publicly available code to compute fea-



Table 3: Comparison of HLPF and the combination of HLPF
and JEC. JEC is the joint energy change feature.

Method Accuracy(%)
HLPF [1] 76.0

HLPF + JEC 78.2
Table 4: State-of-the-art methods on the JHMDB dataset

Method Accuracy(%)
HLPF [1] 76.0

P-CNN [14] 74.6
DT-FV [14] 65.9

NHLPF(ours) 79.6
P-CNN+DT-FV [14] 79.5

IHLPF(ours) 80.4

tures. It demonstrates that, for single methods, NHLPF im-
proves upon the state-of-the-art methods by 3.6% on the JH-
MDB dataset. For combined methods, IHLPF improves un-
pon the state-of-the-art methods by 0.9%. Although the im-
provement is not obvious, the combined features we use are
much simpler than both P-CNN and DT-FV. This is because
P-CNN needs to train two CNNs, which require RGB image
patches and flow patches around the joints as respective in-
puts. Besides, DT-FV has high computation complexity for
computing descriptors around dense trajectories and for Fish-
er vector coding. Our method, however, only calls for the
positions of joints to compute simple features. This manifests
that our novel features are both efficient and effective.

A quantitative comparison per class is presented in Figure
3. It can be concluded that, NHLPF achieves large improve-
ments over HLPF for actions that are difficult to distinguish,
such as run, walk and climb stairs.

6. CONLUSION

In this paper, we propose a set of novel high-level pose fea-
tures (NHLPF). The horizontally and vertically relative posi-
tion features describe the relative position relations between
pairs of joints, and solve the problem of distance invariance of
adjacent joints. The joint inner product feature describes rela-
tive position relations among triplets of joints. The joint ener-
gy change feature combines spatial and temporal information
to describe energy changes in joints due to the motion of other
joints, and offers a new way to use spatio-temporal informa-
tion. NHLPF improves the state-of-the-art on a benchmark
dataset.
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